Tutorial 9

In the following problems, V denotes a finite-dimensional vector space.

1. Suppose $T \in \mathcal{L}(V)$ is such that the characteristic polynomial q and minimal polynomial p of T are

$$
q(z)=(z-1)^{4}(z-5)^{4}, \quad \quad p(z)=(z-1)^{2}(z-5)^{2}
$$

If $\operatorname{dim} E(1, T)=2$ and $\operatorname{dim} E(5, T)=3$ then what is the Jordan form for T (up to reordering)?
2. Let $T \in \mathcal{L}(V)$ be a linear operator and $\beta \subseteq V$ be a basis for V such that

$$
{ }_{\beta}[T]_{\beta}=\left(\begin{array}{ccccc}
\lambda & 0 & \cdots & 0 & 0 \\
1 & \lambda & \ddots & 0 & 0 \\
0 & 1 & \ddots & 0 & 0 \\
0 & 0 & \ddots & \lambda & 0 \\
0 & 0 & \cdots & 1 & \lambda
\end{array}\right)
$$

for some $\lambda \in \mathbb{C}$. What is the Jordan form for T (up to reordering)?
3. Let A be an $n \times n$ matrix over \mathbb{C}. Show that A is similar to its transpose A^{\top}.
4. The lower Pascal matrix of size n is the $n \times n$ matrix P_{n} defined such that the (i, j) entry of P_{n} is $\binom{i-1}{j-1}$. For example,

$$
P_{5}=\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 2 & 1 & 0 & 0 \\
1 & 3 & 3 & 1 & 0 \\
1 & 4 & 6 & 4 & 1
\end{array}\right)
$$

What is the Jordan form for P_{n} (up to reordering)?
5. Recall that for a field \mathbb{F}, the set of polynomials with coefficients in \mathbb{F} is denoted $\mathbb{F}[x]$. Also recall that for $f \in \mathbb{F}[x]$, the ideal generated by f is the set

$$
(f)=\{f g \in \mathbb{F}[x]: g \in \mathbb{F}[x]\}
$$

This ideal defines an equivalence relation on $\mathbb{F}[x]$. Indeed, we say $h_{1}, h_{2} \in \mathbb{F}[x]$ are equivalent if $h_{1}-h_{2} \in(f)$. The set of all such equivalence classes is $\mathbb{F}[x] /(f)$.
(a) What familiar vector space is isomorphic to $\mathbb{F}[x] /\left(x^{n}\right)$?
(b) What familiar set does $\mathbb{R}[x] /\left(x^{2}+1\right)$ "behave like"?
6. Suppose V is a real inner product space and let $T \in \mathcal{L}\left(V_{\mathbb{C}}\right)$. Must there exist $S \in \mathcal{L}(V)$ such that $T=S_{\mathbb{C}}$?
7. Suppose V is a real inner product space. Is it possible to equip $V_{\mathbb{C}}$ with an inner product which restricts to the inner product on V ?

